#NHS70 The NHS highlights its use of digital innovation through MIRA and other solutions. Watch the video here

The effect of active video games on cognitive functioning

by EmmaStanmoreBrendonStubbs DavyVancampfort Eling D.de Bruin, and Joseph Firth

This work is published in Neuroscience & Biobehavioral Reviews, Volume 78: 34-43, July 2017,

https://doi.org/10.1016/j.neubiorev.2017.04.011

 

Physically-active video games (‘exergames’) have recently gained popularity for leisure and entertainment purposes. Using exergames to combine physical activity and cognitively-demanding tasks may offer a novel strategy to improve cognitive functioning. Therefore, this systematic review and meta-analysis was performed to establish effects of exergames on overall cognition and specific cognitive domains in clinical and non-clinical populations.

 

What is cognition?

Cognition can be broadly defined as the actions of the brain involved in understanding and functioning in our external environment (Hirschfeld and Gelman, 1994). As it is generally accepted that cognition requires multiple mental processes, this broader concept has been theoretically separated into multiple ‘cognitive domains’ (Hirschfeld and Gelman, 1994). Although definitions vary, and the boundaries between domains often overlap, examples of distinct areas of cognitive functioning include the processes for learning and remembering verbal and spatial information, attentional capacities, response speed, problem-solving and planning (Strauss et al., 2006).

Various neuropsychological tests have been developed as tools for assessing and quantifying an individual’s overall cognitive functioning (or ‘global cognition’) along with their performance within the separable domains of cognition (Strauss et al., 2006). Performance in these various cognitive tests has been found to be relatively stable over time in healthy adults, and moderately accurate predictors of real-world functioning and occupational performance (Chaytor and Schmitter-Edgecombe, 2003; Hunter, 1986).

Furthermore, neuropsychological tests can detect the deficits in cognitive functioning which arise as a consequence of various psychiatric and neurological diseases (Mathuranath et al., 2000; Nuechterlein et al., 2004). For example, people with Parkinson’s disease show marked impairments in planning and memory tasks (Dubois and Pillon, 1996), whereas those with schizophrenia have cognitive pervasive deficits, 1–2 standard deviations below population norms, which also predict the severity of disability in this population (Green et al., 2000). Additionally, cognitive abilities decline naturally in almost all people during healthy ageing (Van Hooren et al., 2007).

In an ageing population, the functional consequences of cognitive decline may ultimately have a severe social and economic impact. Thus, interventions which improve cognition hold promise for the treatment of psychiatric and neurological diseases, an have positive implications for population health.

 

 

 

Interventions that improve cognition

Fortunately, interventions which stimulate the brain and/or body can improve cognition, or attenuate decline. For instance, physical exercise has been shown to significantly improve global cognition, along with working memory and attentional processes, in both clinical and healthy populations (Firth et al., 2016; Smith et al., 2010; Zheng et al., 2016). Interventions can also be designed to target cognition directly, as computerized training programs for memory and other functions have been found to provide significant cognitive benefits, at least in the short term (Hill et al., 2017; Melby-Lervåg and Hulme, 2013).

Furthermore, ‘gamification’ of cognitive training programs can maximize their clinical effectiveness, as more complex and interesting programs are capable of better engaging patients in cognitively-demanding tasks while also training multiple cognitive processes simultaneously (Anguera et al., 2013).

 

Physical exercise boost cognitive training effect

Previous studies have found that providing both aerobic exercise and cognitive training together may have additive effects, preventing ageing-related cognitive decline more effectively (Shatil, 2013). This may be due to aerobic and cognitive activity stimulating neurogenesis through independent but complementary pathways; as animal studies show that while exercise stimulates cell proliferation, learning tasks support the survival of these new cells (Kempermann et al., 2010), such that combining these two types of training results in 30% more new neurons than either task alone (Fabel et al., 2009).

Rather than delivering aerobic and cognitive training in separate training sessions, recent advances in technology has presented an opportunity for combining physical activity with cognitively-challenging tasks in a single session through ‘exergames’. Exergames are considered as interactive video-games which require the player to produce physical body movements in order to complete set tasks or actions, in response to visual cues (Oh and Yang, 2010). Common examples include the ‘Nintendo Wii’ (along with ‘Wii Fit’ or ‘Wii Sports software’) or the ‘Microsoft Xbox Kinect’. Additionally, virtual reality systems which use exercise bikes and/or treadmills as a medium for players to interact with three-dimensional worlds have also been developed to provide immersive training experiences (Sinclair et al., 2007).

Along with their popular usage for leisure and entertainment, there is growing interest in the application of exergame systems to improve clinical outcomes. Recent systematic reviews and meta-analyses of this growing literature have provided preliminary evidence that exergames can improve various health-related outcomes, including reducing childhood obesity, improving balance and falls risk factors in elderly adults, facilitating functional rehabilitation in people with parkinson’s disease, and even reduce depression (Barry et al., 2014; Li et al., 2016; van’t Riet et al., 2014). However, the effects of exergames on cognitive functioning have not been systematically reviewed, despite many individual studies in this area.

 

Study aim

Therefore, the aim of this study was to systematically review all existing trials of exergames for cognition, and apply meta-analytic techniques to establish the effects of exergames on global cognition along with individual cognitive domains. We also sought to (i) examine the effects of exergames on cognition in healthy and clinically-impaired populations, and (ii) investigate if the effects of exergames differed from those of aerobic exercise alone, by comparing exergames to traditional physical activity control conditions.

 

Methods and Results

We identified 17 eligible RCTs with cognitive outcome data for 926 participants. Random-effects meta-analyses found exergames significantly improved global cognition (g = 0.436, 95% CI = 0.18–0.69, p = 0.001). Significant effects still existed when excluding waitlist-only controlled studies, and when comparing to physical activity interventions. Furthermore, benefits of exergames where observed for both healthy older adults and clinical populations with conditions associated with neurocognitive impairments (all p < 0.05). Domain-specific analyses found exergames improved executive functions, attentional processing and visuospatial skills.

 

 

Read the whole article online at ScienceDirect.

 

Conclusions

Benefits of exergames where observed for both healthy older adults and clinical populations with conditions associated with neurocognitive impairments (all p < 0.05). Domain-specific analyses found exergames improved executive functions, attentional processing and visuospatial skills. These findings present the first meta-analytic evidence for effects of exergames on cognition. Future research must establish which patient/treatment factors influence efficacy of exergames, and explore neurobiological mechanisms of action.

 

References

Ackerman et al., 2010

P.L. Ackerman, R. Kanfer, C. CalderwoodUse it or lose it? Wii brain exercise practice and reading for domain knowledge
Psychol. Ageing, 25 (2010), pp. 753-766

Anderson-Hanley et al., 2016

C. Anderson-Hanley, M. Maloney, N. Barcelos, K. Striegnitz, A. KramerNeuropsychological benefits of neuro-exergaming for older adults: a pilot study of an interactive physical and cognitive exercise system (iPACESTM)
J. Ageing Phys. Act. (2016), pp. 1-32

Anguera et al., 2013

J.A. Anguera, J. Boccanfuso, J.L. Rintoul, O. Al-Hashimi, F. Faraji, J. Janowich, E. Kong, Y.Larraburo, C. Rolle, E. JohnstonVideo game training enhances cognitive control in older adults
Nature, 501 (2013), pp. 97-101

Barcelos et al., 2015

N. Barcelos, N. Shah, K. Cohen, M.J. Hogan, E. Mulkerrin, P.J. Arciero, B.D. Cohen, A.F.Kramer, C. Anderson-HanleyAerobic and Cognitive Exercise (ACE) pilot study for older adults: executive function improves with cognitive challenge while exergaming
J. Int. Neuropsychol. Soc., 21 (2015), pp. 768-779

Barry et al., 2014

G. Barry, B. Galna, L. RochesterThe role of exergaming in Parkinson’s disease rehabilitation: a systematic review of the evidence
J. Neuroeng. Rehabil., 11 (1) (2014)
(no pagination)

Chan et al., 2010

C.L. Chan, E.K. Ngai, P.K. Leung, S. WongEffect of the adapted virtual reality cognitive training program among Chinese older adults with chronic schizophrenia: a pilot study
Int. J. Geriatr. Psychiatry, 25 (2010), pp. 643-649

DerSimonian and Kacker, 2007

R. DerSimonian, R. KackerRandom-effects model for meta-analysis of clinical trials: an update
Contemp. Clin. Trials, 28 (2007), pp. 105-114

 

Eggenberger et al., 2015

P.S. Eggenberger, V. Schumacher, M. Angst, N. Theill, E.D. de BruinDoes multicomponent physical exercise with simultaneous cognitive training boost cognitive performance in older adults? A 6-month rando-mized controlled trial with a 1-year follow-up
Clin. Interv. Ageing, 10 (2015), pp. 1335-1349

Eggenberger et al., 2016

P. Eggenberger, M. Wolf, M. Schumann, E.D. de BruinExergame and balance training modulate prefrontal brain activity during walking and enhance executive function in older adults
Front. Ageing Neurosci. (2016), p. 8

Erickson et al., 2011

K.I. Erickson, M.W. Voss, R.S. Prakash, C. Basak, A. Szabo, L. Chaddock, J.S. Kim, S.Heo, H. Alves, S.M. WhiteExercise training increases size of hippocampus and improves memory
Proc. Natl. Acad. Sci., 108 (2011), pp. 3017-3022

Fabel et al., 2009

K. Fabel, S. Wolf, D. Ehninger, H. Babu, P. Galicia, G. KempermannAdditive effects of physical exercise and environmental enrichment on adult hippocampal neurogenesis in mice
Front. Neurosci., 3 (2009), p. 2

Firth et al., 2016

J. Firth, B. Stubbs, S. Rosenbaum, D. Vancampfort, B. Malchow, F. Schuch, R. Elliott, K.H.Nuechterlein, A.R. YungAerobic exercise improves cognitive functioning in people with schizophrenia: a systematic review and meta-analysis
Schizophr. Bull. (2016), p. sbw115

Green et al., 2000

M.F. Green, R.S. Kern, D.L. Braff, J. MintzNeurocognitive deficits and functional outcome in schizophrenia: are we measuring the right stuff?
Schizophr. Bull., 26 (1) (2000), pp. 119-136

Grigsby et al., 1998

J. Grigsby, K. Kaye, J. Baxter, S.M. Shetterly, R.F. HammanExecutive cognitive abilities and functional status among community-dwelling older persons in the San Luis Valley Health and Ageing Study
J. Am. Geriatr. Soc., 46 (1998), pp. 590-596

Higgins et al., 2011

J.P. Higgins, D.G. Altman, P.C. Gøtzsche, P. Jüni, D. Moher, A.D. Oxman, J. Savović, K.F.Schulz, L. Weeks, J.A. SterneThe Cochrane Collaboration’s tool for assessing risk of bias in randomised trials
BMJ, 343 (2011), p. d5928

Hill et al., 2017

N.T. Hill, L. Mowszowski, S.L. Naismith, V.L. Chadwick, M. Valenzuela, A. LampitComputerized cognitive training in older adults with mild cognitive impairment or dementia: a systematic review and Meta-Analysis
Am. J. Psychiatry, 174 (94) (2017), pp. 329-334

Hirschfeld and Gelman, 1994

L.A. Hirschfeld, S.A. GelmanMapping the Mind: Domain Specificity in Cognition and Culture
Cambridge University Press (1994)

Hughes et al., 2014

T.F. Hughes, J.D. Flatt, B. Fu, M.A. Butters, C.C.H. Chang, M. GanguliInteractive video gaming compared with health education in older adults with mild cognitive impairment: a feasibility study
Int. J. Geriatr. Psychiatry, 29 (2014), pp. 890-898

Hunter, 1986

J.E. HunterCognitive ability, cognitive aptitudes, job knowledge, and job performance
J. Vocat. Behav., 29 (1986), pp. 340-362

Kempermann et al., 2010

G. Kempermann, K. Fabel, D. Ehninger, H. Babu, P. Leal-Galicia, A. Garthe, S. WolfWhy and how physical activity promotes experience-induced brain plasticity
Front. Neurosci., 4 (2010), p. 189

Kimhy et al., 2015

D. Kimhy, J. Vakhrusheva, M.N. Bartels, H.F. Armstrong, J.S. Ballon, S. Khan, R.W. Chang, M.C. Hansen, L. Ayanruoh, A. Lister, E. Castren, E.E. Smith, R.P. SloanThe impact of aerobic exercise on brain-derived neurotrophic factor and neurocognition in individuals with schizophrenia A single-blind, randomized clinical trial
Schizophr. Bull., 41 (2015), pp. 859-868

Knols et al., 2016

R.H. Knols, T. Vanderhenst, M.L. Verra, E.D. de BruinExergames for patients in acute care settings: systematic review of the reporting of methodological quality, FITT components, and program intervention details
Games Health J., 5 (2016), pp. 224-235

Kodama et al., 2013

S. Kodama, S. Tanaka, Y. Heianz, K. Fujihara, C. Horikawa, H. Shimano, K. Saito, N.Yamada, Y. Ohashi, H. SoneAssociation between physical activity and risk of all-cause mortality and cardiovascular disease in patients with diabetes
Diabetes Care, 36 (2013), pp. 471-479

Kooiman and Sheehan, 2015

B.J. Kooiman, D.P. SheehanInteracting with the past, present, and future of exergames: at the beginning of a new life cycle of video games?
Soc. Leisure, 38 (2015), pp. 55-73

Li et al., 2016

J. Li, Y.-L. Theng, S. FooEffect of exergames on depression: a systematic review and meta-analysis
Cyberpsychol. Behav. Soc. Networking, 19 (2016), pp. 34-42

Maillot et al., 2012

P. Maillot, A. Perrot, A. HartleyEffects of interactive physical-activity video-game training on physical and cognitive function in older adults
Psychol. Ageing, 27 (2012), pp. 589-600

Marshall et al., 2011

G.A. Marshall, D.M. Rentz, M.T. Frey, J.J. Locascio, K.A. Johnson, R.A. Sperling, A.s.D.N.InitiativeExecutive function and instrumental activities of daily living in mild cognitive impairment and Alzheimer’s disease
Alzheimer’s Dement., 7 (2011), pp. 300-308

Mathuranath et al., 2000

P. Mathuranath, P. Nestor, G. Berrios, W. Rakowicz, J. HodgesA brief cognitive test battery to differentiate Alzheimer’s disease and frontotemporal dementia
Neurology, 55 (2000), pp. 1613-1620

Melby-Lervåg and Hulme, 2013

M. Melby-Lervåg, C. HulmeIs working memory training effective? A meta-analytic review
Dev. Psychol., 49 (2013), p. 270

Mirelman et al., 2016

A. Mirelman, L. Rochester, I. Maidan, S. Del Din, L. Alcock, F. Nieuwhof, M.O. Rikkert, B.R.Bloem, E. Pelosin, L. Avanzino, G. Abbruzzese, K. Dockx, E. Bekkers, N. Giladi, A. Nieuwboer, J.M.HausdorffAddition of a non-immersive virtual reality component to treadmill training to reduce fall risk in older adults (V-TIME): a randomised controlled trial
Lancet, 388 (2016), pp. 1170-1182

Moher et al., 2009

D. Moher, A. Liberati, J. Tetzlaff, D.G. AltmanPreferred reporting items for systematic reviews and meta-analyses: the PRISMA statement
PLoS Med., 6 (2009), p. pe1000097

Nuechterlein et al., 2004

K.H. Nuechterlein, D.M. Barch, J.M. Gold, T.E. Goldberg, M.F. Green, R.K. HeatonIdentification of separable cognitive factors in schizophrenia
Schizophr. Res., 72 (2004), pp. 29-39

Oh and Yang, 2010

Y. Oh, S. YangDefining exergames and exergaming
Proceedings of Meaningful Play (2010), pp. 1-17

Orwin, 1983

R.G. OrwinA fail-safe N for effect size in meta-analysis
J. Educ. Stat. (1983), pp. 157-159

Park and Yim, 2016

J. Park, J.E. YimA new approach to improve cognition, muscle strength, and postural balance in community-dwelling elderly with a 3-D virtual reality Kayak program
Tohoku J. Exp. Med., 238 (2016), pp. 1-8

Pompeu et al., 2011

J. Pompeu, F. Mendes, K. Silva, A. Mondenesi, T. Oliveira, A. Peterson, M.E.P. PiemonteBalance improvement in patients with parkinson’s disease after motor and cognitive training
Physiotherapy (United Kingdom), 97 (2011), pp. eS1012-eS1013

Schattin et al., 2016

A. Schattin, R. Arner, F. Gennaro, E.D. de BruinAdaptations of prefrontal brain activity, executive functions, and gait in healthy elderly following exergame and balance training: a randomized-controlled study
Front. Ageing Neurosci., 8 (Nov) (2016)
(no pagination)

Schoene et al., 2013

D. Schoene, S.R. Lord, K. Delbaere, C. Severino, T.A. Davies, S.T. SmithA randomized controlled pilot study of home-based step training in older people using videogame technology
PLoS One, 8 (2013), p. e57734

Shatil, 2013

E. ShatilDoes combined cognitive training and physical activity training enhance cognitive abilities more than either alone? A four-condition randomized controlled trial among healthy older adults
Front. Ageing Neurosci., 5 (2013), p. 8

Şimşek and Çekok, 2016

T.T. Şimşek, K. ÇekokThe effects of Nintendo WiiTM-based balance and upper extremity training on activities of daily living and quality of life in patients with sub-acute stroke: a randomized controlled study
Int. J. Neurosci., 126 (2016), pp. 1061-1070

Sinclair et al., 2007

J. Sinclair, P. Hingston, M. MasekConsiderations for the design of exergames
Proceedings of the 5th international conference on Computer graphics and interactive techniques in Australia and Southeast Asia, ACM (2007), pp. 289-295

Smith et al., 2010

P.J. Smith, J.A. Blumenthal, B.M. Hoffman, H. Cooper, T.A. Strauman, K. Welsh-Bohmer, J.N.Browndyke, A. SherwoodAerobic exercise and neurocognitive performance: a meta-analytic review of randomized controlled trials
Psychosom. Med., 72 (2010), p. 239

Staiano et al., 2012

A.E. Staiano, A.A. Abraham, S.L. CalvertCompetitive versus cooperative exergame play for African American adolescents’ executive function skills: short-term effects in a long-term training intervention
Dev. Psychol., 48 (2012), pp. 337-342

Strauss et al., 2006

E. Strauss, E.M. Sherman, O. SpreenA compendium of neuropsychological tests: Administration, norms, and commentary
Am. Chem. Soc. (2006)

Van Hooren et al., 2007

S. Van Hooren, A. Valentijn, H. Bosma, R. Ponds, M. Van Boxtel, J. JollesCognitive functioning in healthy older adults aged 64–81: a cohort study into the effects of age, sex, and education
Ageing Neuropsychol. Cogn., 14 (2007), pp. 40-54

Vaynman et al., 2004

S. Vaynman, Z. Ying, F. Gomez‐PinillaHippocampal BDNF mediates the efficacy of exercise on synaptic plasticity and cognition
Eur. J. Neurosci., 20 (2004), pp. 2580-2590

Warburton et al., 2006

D.E. Warburton, C.W. Nicol, S.S. BredinHealth benefits of physical activity: the evidence
Can. Med. Assoc. J., 174 (2006), pp. 801-809

Zheng et al., 2016

G. Zheng, R. Xia, W. Zhou, J. Tao, L. ChenAerobic exercise ameliorates cognitive function in older adults with mild cognitive impairment: a systematic review and meta-analysis of randomised controlled trials
Br. J. Sports Med., 50 (2016), pp. 1443-1450

Zimmermann et al., 2014

R. Zimmermann, U. Gschwandtner, N. Benz, F. Hatz, C. Schindler, E. Taub, P. FuhrCognitive training in Parkinson disease: cognition-specific vs nonspecific computer training
Neurology, 82 (2014), pp. 1219-1226

van’t Riet et al., 2014

J. van’t Riet, R. Crutzen, A.S. LuHow effective are active videogames among the young and the old? Adding meta-analyses to two recent systematic reviews
Games Health: Res. Dev. Clin. Appl., 3 (2014), pp. 311-318

Subscribe to our Newsletter

We'd love to stay in touch and if you're interested to hear about some of our most important news and achievements, please consider subscribing to our periodic newsletter below.